Object Classification from Acoustic Analysis of Impact

نویسندگان

  • Robert S Durst
  • Eric P Krotkov
چکیده

We address the problem of autonomously classifying objects from the sounds they make when struck, and present results from different attempts to classify various items. Previous work has shown that object classification is possible based on features derived from the frequency content of signals. We develop a moving-maximum algorithm to extract the two most significant spikes in the FFT of the sounds of impact, and use these extracted spikes as features. We describe the transformation of the training data’s extracted features into a compilation of representative cluster means. These cluster means are used as labeled inputs to the different classifiers discussed. We discuss two techniques to classify test vectors based on their extracted feature spikes, and show that accurate classification of objects is possible using these features. The first technique is the familiar minimumdistance classifier that calculates the distance between a given test vector and each cluster mean, and assigns the test vector to the cluster that yields the smallest error. The second technique is one we developed for the task: the decision-map clussijkr: a hybrid minimum-distance classifier and decision-tree classifier, that iteratively finds the closest cluster mean to each test vector and uses multiple features only if it cannot classify the test sample. Results from classifier trials show that using our moving-maximum feature extractor and decision-map classifier, object classification from the sound of impact can be done as accurately as using the minimum-distance classifier, but at significantly lower computational expense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Analysis Accruing of Sentinel 2A Image’s Classification Methods Based on Object Base and Pixel Base in Flood Area Zoning of Taleqan River

Flood zonation mapping is one of the priorities for the soil and water management, which Remote Sensing (RS) capabilities are very applicable to this issue. The main objective of this research was study of accuracy of the Object oriented and Pixel based methods for flood zonation mapping in the Taleghan River basin. Therefore, the Sentinel 2A satellite image of the study area classified using s...

متن کامل

Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques

ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Revealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)

Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993